Math, asked by Anoj5544, 1 year ago

Show that one and only one out of n,n+2,n+4,is divisible by 3,where n is any positive integer

Answers

Answered by hruthik2222
5901
Solution:

let n be any positive integer and b=3
n =3q+r
where q is the quotient and r is the remainder
0_ <r<3
so the remainders may be 0,1 and 2
so n may be in the form of 3q, 3q=1,3q+2


CASE-1

IF N=3q
n+4=3q+4
n+2=3q+2
here n is only divisible by 3

CASE 2
if n = 3q+1
n+4=3q+5
n+2=3q=3
here only n+2 is divisible by 3

CASE 3
IF n=3q+2
n+2=3q+4
n+4=3q+2+4
=3q+6
here only n+4 is divisible by 3



HENCE IT IS JUSTIFIED THAT ONE AND ONLY ONE AMONG n,n+2,n+4 IS DIVISIBLE BY 3 IN EACH CASE
Answered by Anonymous
2234

▶ Question :-

→ Prove that one and only one out of n, n + 2 and n + 4 is divisible by 3, where n is any positive integer .

▶ Step-by-step explanation :-

Euclid's division Lemma any natural number can be written as: .

where r = 0, 1, 2,. and q is the quotient.

∵ Thus any number is in the form of 3q , 3q+1 or 3q+2.

→ Case I: if n =3q

⇒n = 3q = 3(q) is divisible by 3,

⇒ n + 2 = 3q + 2 is not divisible by 3.

⇒ n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

→ Case II: if n =3q + 1

⇒ n = 3q + 1 is not divisible by 3.

⇒ n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.

⇒ n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.

→ Case III: if n = 3q + 2

⇒ n =3q + 2 is not divisible by 3.

⇒ n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

⇒ n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.

Thus one and only one out of n , n+2, n+4 is divisible by 3.

Hence, it is solved

Similar questions