Show that one and only one out of n, (n+2), (n+4) is divisible by 3 where necessary is any positive integer?
Answers
(i) When n = 3k:
n is divisible by 3.
n + 2 = 3k + 2 ⇒ n + 2 is not divisible by 3.
n + 4 = 3k + 4 = 3(k + 1) + 1 ⇒ n + 4 is not divisible by 3.
(ii) When n = 3k + 1:
n is not divisible by 3.
n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) ⇒ n + 2 is divisible by 3.
n + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) + 2 ⇒ n + 4 is not divisible by 3.
(iii) When n = 3k + 2:
n is not divisible by 3.
n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 ⇒ n + 2 is not divisible by 3.
n + 4 = (3k + 2) + 4 = 3k + 6 = 3(k + 2) ⇒ n + 4 is divisible by 3.
Hence exactly one of the numbers n, n + 2 or n + 4 is divisible by 3.
Step-by-step explanation:
Euclid's division Lemma any natural number can be written as: .
where r = 0, 1, 2,. and q is the quotient.
∵ Thus any number is in the form of 3q , 3q+1 or 3q+2.
→ Case I: if n =3q
⇒n = 3q = 3(q) is divisible by 3,
⇒ n + 2 = 3q + 2 is not divisible by 3.
⇒ n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.
→ Case II: if n =3q + 1
⇒ n = 3q + 1 is not divisible by 3.
⇒ n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.
⇒ n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.
→ Case III: if n = 3q + 2
⇒ n =3q + 2 is not divisible by 3.
⇒ n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.
⇒ n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.
Thus one and only one out of n , n+2, n+4 is divisible by 3.
Hence, it is solved.