Math, asked by davekaran, 1 year ago

Show that p(2,3)q(1,5)and r(2+√3,4) are the vertices of an equilateral triangle ​

Answers

Answered by stefangonzalez246
6

Given vertices are not an equilateral triangle.

Given

To show that given values are the vertices of an equilateral triangle.

Value : P ( 2, 3 )      Q ( 1, 5 )        R ( 2 + \sqrt{3}, 4 )

Steps :

( 1 ) Use distance formula to find the gives values consists of equal vertices.

   Given all the vertices are equal then move to step ( 2 ).

( 2 ) If the given vertices are equal , then area of an equilateral triangle is,

                                     A = \frac{\sqrt{3} }{4} a^{2}

Using distance formula :

                     PQ = \sqrt{(x_{2} - x_{1} ) ^{2} + ( y_{2} - y_{1} ) ^{2}  }

                               P ( 2, 3 )      Q ( 1, 5 )    

                                x_{1} = 2   ;   x_{2} = 1   ;   y_{1} = 3   ;   y_{2} = 5

                            = \sqrt{( 1-2 )^{2} + (5 - 3)^{2}  } \\

                            = \sqrt{(-1)^{2 + (2)^{2} } }

                            = \sqrt{1 + 4}

                      PQ = \sqrt{5}

                      QR = \sqrt{(x_{2} - x_{1} ) ^{2} + ( y_{2} - y_{1} ) ^{2}  }

                              Q ( 1, 5 )        R ( 2 + \sqrt{3}, 4 )

                                  x_{1} = 1   ;   x_{2} = 2+\sqrt{3}  ;   y_{1} = 5   ;   y_{2} = 4

                               = \sqrt{((2+\sqrt{3)} - 1)^{2} + (4-5)^{2} }

             ((2+\sqrt{3} )-1) ^{2} = (a-b)^2\\ = a^2 + b^2 +-2ab

                        Solving above gives 4+ \sqrt{3}

                               = \sqrt{4+2\sqrt{3} + 1}

                          QR = \sqrt{5 + 2\sqrt{3} }    

                         PR = \sqrt{(x_{2} - x_{1} ) ^{2} + ( y_{2} - y_{1} ) ^{2}  }

                         P ( 2, 3 )           R ( 2 + \sqrt{3}, 4 )

                         x_{1} = 2   ;   x_{2} = 2+\sqrt{3}  ;   y_{1} = 3   ;   y_{2} = 4

                         PR = \sqrt{((2+\sqrt{3)}-2)^2 + (4-3)^2 }

                              = \sqrt{(\sqrt{3}^2)+ (1)^2 }

                              = \sqrt{3+1}

                        PR = 4

Hence,       PQ = \sqrt{5}    ;    QR = \sqrt{5 + 2\sqrt{3} }      ;       PR = 4

Vertices of all the three sides are different, it is not an equilateral triangle.

Therefore, given vertices are no an equilateral triangle.

To learn more...

1. brainly.in/question/5288280

2. brainly.in/question/2334654      

                             

         

   

Answered by INUSEUSER
0

Answer:All Same ∆=Equilateral

Step-by-step explanation:Refer #Answer

Similar questions