Math, asked by gonajashwanth, 3 months ago

show that points A(a,0) B(-a,0) C(0,a√3) form

equilateral triangle​

Answers

Answered by mathdude500
6

Given Question :-

  • Show that points A(a,0) B(-a,0) C(0,a√3) form an equilateral triangle.

ANSWER

GIVEN :-

  • Points A(a,0) B(-a,0) C(0,a√3)

TO SHOW :-

  • Points A(a,0) B(-a,0) C(0,a√3) forms equilateral triangle.

FORMULA USED :-

DISTANCE FORMULA

We know that,

Distance between two points is calculated by using the formula given below,

 \longmapsto \rm \: \rm D = \sqrt{ {(x_{2} - x_{1}) }^{2} + {(y_{2} - y_{1})}^{2} }

CALCULATION :-

DISTANCE BETWEEN A and B

Here,

  • • x₁ = a

  • • x₂ = - a

  • • y₁ = 0

  • • y₂ = 0

So, distance between these points is,

 \longmapsto \rm \: AB =  \sqrt{ {(a + a)}^{2} +  {(0 - 0y}^{2}  }

 \longmapsto \rm \: AB =  \sqrt{ {(2a)}^{2} }

 \longmapsto \boxed{ \green{ \bf \: AB \:  =  \: 2a}}

DISTANCE BETWEEN B and C

Here,

  • • x₁ = - a

  • • x₂ = 0

  • • y₁ = 0

  • • y₂ = a√3

So, distance between these points is,

 \longmapsto \rm \: BC =  \sqrt{ {(0 + a)}^{2} +  {( \sqrt{3}a - 0) }^{2}  }

 \longmapsto \rm \: BC =  \sqrt{ {a}^{2} +  {3a}^{2}  }

 \longmapsto \rm \: BC =  \sqrt{ {4a}^{2} }

 \longmapsto \boxed{ \green{ \bf \:BC \:  =  \: 2a }}

DISTANCE BETWEEN A and C

Here,

  • • x₁ = a

  • • x₂ = 0

  • • y₁ = 0

  • • y₂ = a√3

So, distance between these points is,

 \longmapsto \rm \: AC =  \sqrt{ {(0 - a)}^{2}  +  {( \sqrt{3}a - 0) }^{2} }

 \longmapsto \rm \: AC =  \sqrt{ {a}^{2} +  {3a}^{2}  }

 \longmapsto \rm \: AC =  \sqrt{4 {a}^{2} }

 \longmapsto \boxed{ \green{ \bf \: AC \:  =  \: 2a}}

 \longmapsto \boxed{ \pink{ \bf \: Hence,  \: AB = BC = AC}}

 \longmapsto \boxed{ \red{ \bf \: Hence,  \:  \triangle \: ABC \: is \: equilateral.}}

Similar questions