Math, asked by asifjohnson4117, 7 hours ago

Show that ∆PQS ≅ ∆RQS by supplying the missing reasons:

Answers

Answered by NeonBlast
1

Step-by-step explanation:

\sf \blue{Trigonometry\: Table}\\{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \hline \\ \rm \red{cos \: A} & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \hline \\ \rm \red{tan A}& 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \hline \\ \rm \red{cosec A }& \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\  \hline\\ \rm \red{sec A} & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\  \hline \\ \rm \red{cot A }& \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}}

Similar questions