Math, asked by shravansampally, 3 months ago

Show that r+r₁ +r₂ r-₁ =4Rcos C.​

Answers

Answered by albertalimbullo1981
0

Answer:

r

1

=4Rsin

2

A

cos

2

B

cos

2

C

r

2

=4Rsin

2

B

cos

2

C

cos

2

A

r

3

=4Rsin

2

C

cos

2

A

cos

2

B

r=4Rsin

2

A

sin

2

B

sin

2

C

Now,

r

1

+r

2

−r

3

+r=4R[4Rsin

2

A

cos

2

B

cos

2

C

+sin

2

B

cos

2

C

cos

2

A

−sin

2

C

cos

2

A

cos

2

B

+sin

2

A

sin

2

B

sin

2

C

]

=4R[cos

2

C

(sin

2

A

cos

2

B

+sin

2

B

cos

2

A

)−sin

2

C

(cos

2

A

cos

2

B

−sin

2

A

sin

2

B

)]

=4R[cos

2

C

sin

2

A+B

−sin

2

C

cos

2

A+B

]=4R[cos

2

C

sin(

2

π

2

C

)−sin

2

C

cos(

2

π

2

C

)]

=4R[cos

2

C

cos

2

C

−sin

2

C

sin

2

C

]=4RcosC

Was this answer helpful?

upvote

56

downvote

6

SIMILAR QUESTIONS

star-struck

cos11

o

−cos2

o

> 0

Medium

View solution

>

If I,O and P be respectively the incentre, circumcentre and orthocentre and G the centroid of the triangle ABC prove that

IP

2

=2r

2

−4R

2

cosAcosBcosC.

Step-by-step explanation:

sana po makatulong pa brainliest na lang po at pa thank you...

Similar questions