Math, asked by gbhanureddy, 9 months ago

Show that r+r3+r1-r2=4RcosB

Answers

Answered by stefangonzalez246
13

Proved that  r + r_{3} + r_{1} - r_{2} = 4R cos B

Given

To prove that r + r_{3} + r_{1} - r_{2} = 4R cos B

Let us take,  r + r_{3}  = 4R \frac{sin C}{2 ( \frac{sin A}{2}.\frac{sin B}{2} + \frac{cos A}{2}.\frac{cos B}{2})}

                                = 4R sin \frac{C}{2}  cos\frac{A-B}{2}     -----> ( 1 )

                    r_{1} - r_{2} = 4R sin \frac{C}{2} } [ sin \frac{A}{2} sin \frac{B}{2}  + cos \frac{A}{2} cos \frac{B}{2} ]

                                = 4R cos \frac{C}{2} sin \frac{(A-B)}{2}   -----> ( 2 )

Add the equation ( 1 ) and ( 2 ) to get the desired result,

                        r + r_{3} + r_{1} - r_{2}

                  = 4R sin \frac{C}{2}  cos\frac{A-B}{2} + 4R cos \frac{C}{2} sin \frac{(A-B)}{2}

                  = 4R sin [ \frac{C}{2} +\frac{A}{2} + \frac{B}{2} ]\\

                  = 4R sin ( 90- \frac{B}{2} - \frac{B}{2} )

                  = 4Rsin (90- \frac{2B}{2})   -----> ( sin (90° - B) = cos B )

                  = 4R cos B.

Hence, proved.  

To learn more...    

brainly.in/question/12360055      

brainly.in/question/7030947

               

Answered by addagatlaraghunath
4

Step-by-step explanation:

I was not the final ans but u can also fallow these procedures. I hope it will help uhh.

and thank you..

Attachments:
Similar questions