show that root 1+ sin 2A ÷1-sin2A = tan (pai ÷4 + A)
Answers
Answered by
0
Step-by-step explanation:
we have,
√{(1+sin2A)/(1-sin2A)} = tan(π/4+A)
LHS,,
by rationalizing
= √{(1+sin2A)²/(1-sin²2A)}
= √{(1+sin2A)²/cos²2A}
= √{[1-cos(π/2+2A)]²/sin²(π/2+2A)}
= {[1-cos(π/2+2A)]/[sin(π/2+2A)]}
={2sin²(π/4+A)/2sin(π/4+A)cos(π/4+A)}
= {sin(π/4+A)/cos(π/4+A)}
=> tan(π/4+A) = RHS
hence proved....
Similar questions
Political Science,
6 months ago
History,
6 months ago
Science,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago