English, asked by khushi2493, 11 months ago

show that root 1+sin2A ÷ 1- sin 2A = tan (pie ÷4 +A )​

Answers

Answered by ihrishi
1

Explanation:

(1 + sin2A) \div (1  -  sin2A)  = tan( \frac{ \pi}{4}  + A)  \\ LHS = (1 + sin2A) \div (1  -  sin2A)  \\  =  \frac{1 + sin2A}{1  -  sin2A}    \\  =  \frac{ {sin}^{2} A + {cos}^{2} A + 2sinA cosA}{{sin}^{2} A + {cos}^{2} A  -  2sinA cosA}  \\  =  \frac{ cosA + sinA}{cosA  -  sinA}  \\ dividing \: numerator \: and \: denominator \: \\  by \: cosA \:  \\ =  \frac{ 1 + tanA}{1  -  tanA} \\  = \frac{ tan \frac{ \pi}{4}  + tanA}{1  - tan \frac{ \pi}{4} tanA} \:  \\  = tan (\frac{ \pi}{4} + A) \\ =RHS \\ thus \: proved.

Similar questions