Math, asked by godofsoftware42006, 9 months ago

Show that root 5 Is irrational​

Answers

Answered by harant72
1

PLEASE MARK IT AS A BRAINLIEST AND FOLLOW ME

Answer:

√5

2.236067977499789

In the value of √5 , there is no no. that can divide root 5 fully

Answered by devika6586
0

Answer:

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Step-by-step explanation:

hope it helps u

Similar questions