Math, asked by queen82, 1 year ago

show that root 5 + root 3 is an irrational number

Answers

Answered by madhaviwarekar
2

Answer:

√5+√3=a/b

√5=a/b-√3

(√5)2=(a/b-√3)2

5=a2/b2-2a√3/b+3

2=a2/b2-2√3a/b

2√3a/b=a2-2b2/b2

√3=a2-2b2/2ab

√3 is rational a contradiction

hence √3+√5 is irrational


madhaviwarekar: i hope its true ans
Answered by muskanc918
11

\huge\bf{\textsf{\underline{\underline {Answer:-}}}}

\large\sf{Let\:\sqrt{5}+\sqrt{3}\:is\:a\:rational}

\large\sf{number\:,\:say\:'r'.}

\large\sf{Then,}

\large\sf{\implies\:\sqrt{5} + \sqrt{3} = r}

\large\sf{\implies\:\sqrt{5} =r-\sqrt{3}  }

\large\sf{On\:squaring\:both\:sides, we\:get-}

\large\sf{\implies {( \sqrt{5}) }^{2}  =  {(r -  \sqrt{3} )}^{2}  }

\large\sf{\implies  5 =  {r}^{2}  + 3 - 2 \times r \times  \sqrt{3}  }

\large\sf{\implies    5 =  {r}^{2}  + 3 - 2 \sqrt{3} \:  r  }

\large\sf{\implies  2 \sqrt{3}  \: r =  {r}^{2}  + 3 - 5    }

\large\sf{ \implies   \sqrt{3}  =  \frac{ {r}^{2}  + 3 -  5}{2r} </p><p>  }

\large\sf{Since,\:r\:is\:rational.\:(According \:to \:our\:assumption) }

\large\sf{Therefore, \frac{ {r}^{2}  + 3 -  5}{2r} \:is\:also\:rational. }

\large\sf{\implies\:\sqrt{3}\:is\:also\:rational. }

\large\sf{But,\:it\:is\:an\:irrational\:number. }

\large\sf{Therefore,\:our\:assumption\:is\:wrong. }

\large\sf{Hence, \sqrt{5}+\sqrt{3}\:is\:an\:irrational  }

\large\sf{number.}

\large\sf{Hence,\:proved. }


Anonymous: Superb Jaan❤️
madhaviwarekar: thanku
muskanc918: tysm✨✨✳✳
Similar questions