Math, asked by saisweety625, 3 months ago

show that root of 1 + sin a by 1 minus Sin A is equals to secant a + tan a​

Answers

Answered by AradhanaBai
5

Answer:

It is proved. See the attachment

Attachments:
Answered by hemanji2007
4

Topic:-

Trigonometry

Question:-

prove \: that \:  \sqrt{ \dfrac{1 + sin \alpha }{1  - sin \alpha } }  = sec \alpha  + tan \alpha

Solution:-

Now take LHS to prove

 \sqrt{ \frac{1 + sin \alpha }{1 - sin \alpha } }

Now do rationalization

 \sqrt{ \frac{1 + sin \alpha }{1 - sin \alpha } \times  \frac{1  +  sin \alpha }{1  +  sin \alpha }  }

 =  \sqrt{ \frac{ {(1 + sin \alpha )}^{2} }{(1 + sin \alpha )(1 - si n \alpha )} }

 \sqrt{ \frac{ {(1 + sin \alpha )}^{2} }{1 -  {sin}^{2} \alpha  } }

 \sqrt{ \frac{ {(1 + sin \alpha )}^{2} }{ {cos}^{2} \alpha  } }

 \sqrt{ \frac{ {(1 + sin \alpha )}^{2} }{ {cos}^{2} \alpha  } }

 \sqrt{ (\frac{1 + sin \alpha }{cos \alpha } {)}^{2}    }

 \frac{1 + sin \alpha }{cos \alpha }

 =  \frac{1}{cos \alpha }  +  \frac{sin \alpha }{ \cos \alpha  }

sec \alpha  + tan \alpha

Hence Proved //

Know More:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions