Math, asked by dj12387, 10 months ago

show that root of sec ² theeta +Cosec ²theeta=tantheeta +cottheeta​

Answers

Answered by Sharad001
43

Question :-

Prove that,

 \star \sqrt{ { \sec }^{2} \theta +  { \csc}^{2} \theta  }  =  \tan \theta +  \cot \theta \\

Solution :-

Taking left hand side ,

 \implies \: \sqrt{ { \sec }^{2} \theta +  { \csc}^{2} \theta  } \:  \\  \\   \because \:  { \sec }^{2} \theta -  { \tan }^{2} \theta    = 1 \\  \\  \:  \:  \:  \:  \:  { \csc }^{2} \theta +  { \cot }^{2} \theta \:  = 1  \\  \therefore \:  \\ \implies \:  \sqrt{1 +  { \tan }^{2}  \theta + 1 +  { \cot }^{2} \theta }  \\  \\  \implies \:  \sqrt{ { \tan}^{2} \theta \:  +  { \cot }^{2} \theta  + 2 }  \\  \\  \because \:  { \tan }^{2}  \theta \:  { \cot }^{2}  \theta = 1 \\  \\  \therefore \\   \\ \small  \implies \: \sqrt{ { \tan}^{2} \theta \:  +  { \cot }^{2} \theta  + 2 { \tan }^{2}  \theta \:  { \cot }^{2} \theta  }   \:  \\  \\  \implies \:  \sqrt{ {( \tan \theta +  \cot \theta)}^{2} }  \\  \\  \implies \: \tan \theta +  \cot \theta\:

LHS = RHS

Hence proved .

Answered by Anonymous
8

Step-by-step explanation:

Question :-

Prove that,

\begin{lgathered}\star \sqrt{ { \sec }^{2} \theta + { \csc}^{2} \theta } = \tan \theta + \cot \theta \\\end{lgathered}

sec

2

θ+csc

2

θ

=tanθ+cotθ

Solution :-

Taking left hand side ,

\begin{lgathered}\implies \: \sqrt{ { \sec }^{2} \theta + { \csc}^{2} \theta } \: \\ \\ \because \: { \sec }^{2} \theta - { \tan }^{2} \theta = 1 \\ \\ \: \: \: \: \: { \csc }^{2} \theta + { \cot }^{2} \theta \: = 1 \\ \therefore \: \\ \implies \: \sqrt{1 + { \tan }^{2} \theta + 1 + { \cot }^{2} \theta } \\ \\ \implies \: \sqrt{ { \tan}^{2} \theta \: + { \cot }^{2} \theta + 2 } \\ \\ \because \: { \tan }^{2} \theta \: { \cot }^{2} \theta = 1 \\ \\ \therefore \\ \\ \small \implies \: \sqrt{ { \tan}^{2} \theta \: + { \cot }^{2} \theta +

sec

2

θ+csc

2

θ

∵sec

2

θ−tan

2

θ=1

csc

2

θ+cot

2

θ=1

1+tan

2

θ+1+cot

2

θ

tan

2

θ+cot

2

θ+2

∵tan

2

θcot

2

θ=1

tan

2

θ+cot

2

θ+2tan

2

θcot

2

θ

(tanθ+cotθ)

2

⟹tanθ+cotθ

LHS = RHS

Hence proved

Thankuu mate ❤✌

Similar questions