show that root of sec ² theeta +Cosec ²theeta=tantheeta +cottheeta
Answers
Question :-
Prove that,
Solution :-
Taking left hand side ,
LHS = RHS
Hence proved .
Step-by-step explanation:
Question :-
Prove that,
\begin{lgathered}\star \sqrt{ { \sec }^{2} \theta + { \csc}^{2} \theta } = \tan \theta + \cot \theta \\\end{lgathered}
⋆
sec
2
θ+csc
2
θ
=tanθ+cotθ
Solution :-
Taking left hand side ,
\begin{lgathered}\implies \: \sqrt{ { \sec }^{2} \theta + { \csc}^{2} \theta } \: \\ \\ \because \: { \sec }^{2} \theta - { \tan }^{2} \theta = 1 \\ \\ \: \: \: \: \: { \csc }^{2} \theta + { \cot }^{2} \theta \: = 1 \\ \therefore \: \\ \implies \: \sqrt{1 + { \tan }^{2} \theta + 1 + { \cot }^{2} \theta } \\ \\ \implies \: \sqrt{ { \tan}^{2} \theta \: + { \cot }^{2} \theta + 2 } \\ \\ \because \: { \tan }^{2} \theta \: { \cot }^{2} \theta = 1 \\ \\ \therefore \\ \\ \small \implies \: \sqrt{ { \tan}^{2} \theta \: + { \cot }^{2} \theta +
⟹
sec
2
θ+csc
2
θ
∵sec
2
θ−tan
2
θ=1
csc
2
θ+cot
2
θ=1
∴
⟹
1+tan
2
θ+1+cot
2
θ
⟹
tan
2
θ+cot
2
θ+2
∵tan
2
θcot
2
θ=1
∴
⟹
tan
2
θ+cot
2
θ+2tan
2
θcot
2
θ
⟹
(tanθ+cotθ)
2
⟹tanθ+cotθ
LHS = RHS
Hence proved