Math, asked by ishikamogha0808, 3 months ago

show that
(sec A - Cos A). (cot A + tan A) = sec A . tan A​

Answers

Answered by Anonymous
3

Answer:

(sec A - Cos A). (cot A + tan A) = sec A . tan A

L.H.S

( \frac{1}{cos \: a}  - cos \: a)( \frac{cos \: a}{sin \: a}  +  \frac{sin \: a}{cos \: a} )

( \frac{1 - cos {}^{2} a}{cos \: a} )( \frac{cos {}^{2} a+ sin {}^{2}a  }{sin \: a \: cos \: a} )

( \frac{sin {}^{2}a }{cos \: a} )( \frac{1}{sin \: a \: cos \: a} )

( \frac{sin \: a}{cos \: a}  \times  \frac{1}{cos \: a} )

tan A . sec A

hence verified

Answered by shreya2134
1

Answer:

put cosA=1/sec A and cot A=1/ tan A

Put The Value :

(sec A - 1/sec A) . (1/ tan A+ tan A) = sec A . tan A

(sec²A-1/sec A) . ( tan² A + 1 / tan A ) = sec A. tanA

( tan²A / sec A) . ( sec²A / tan A) = sec A . tan A

tan²A/ sec A * sec²A / tan A = sec A . tan A

tan A . sec A = sec A . tan A

Hence proved!

Similar questions