Show that :
(sec∅ - tan∅)² = 1-sin∅/1+sin∅
Answers
Answered by
65
Question :-
Show that :
(sec∅ - tan∅)² = 1-sin∅/1+sin∅
Solution :-
(sec∅ - tan∅)² = [1/cos∅ - sin∅/cos∅]²
= [1-sin∅/cos∅]² = (1 - sin∅)²/cos²∅
= (1-sin∅)²/1-sin²∅ = (1-sin∅)(1-sin∅)/(1-sin∅)(1+sin∅)
= 1-sin∅/1+ sin∅
Answered by
2
LHS
(sec@ - tan@)^2
(1 - sin@)^2/cos^2@
using formula
cos^2@ = /(1 + sin@)(1 - sin@)
(1 - sin@)^2/(1 + sin@)(1 - sin@)
(1 - sin@ )/(1 + sin@)
Hence LHS = RHS
proved
Similar questions
Chemistry,
5 months ago
Political Science,
5 months ago
Math,
5 months ago
Math,
10 months ago
English,
10 months ago
Political Science,
1 year ago
Math,
1 year ago