Math, asked by Hyperspy, 11 months ago

Show that :

(sec⊖ - tan⊖)² = 1-sin⊖/1+sin⊖

Answers

Answered by Anonymous
25

Qᴜᴇsᴛɪᴏɴ :-

Show that :

(sec⊖ - tan⊖)² = 1-sin⊖/1+sin⊖

Sᴏʟᴜᴛɪᴏɴ :-

(sec⊖ - tan⊖)² = [1/cos⊖ - sin⊖/cos⊖]²

= [1-sin⊖/cos⊖]² = (1 - sin⊖)²/cos²⊖

= (1-sin⊖)²/1-sin²⊖ = (1-sin⊖)(1-sin⊖)/(1-sin⊖)(1+sin⊖)

= 1-sin⊖/1 + sin⊖

Answered by brainlyshacker58
13

= (1-sin⊖)²/1-sin²⊖ = (1-sin⊖)(1-sin⊖)/(1-sin⊖)(1+sin⊖)

= 1-sin⊖/1 + sin⊖

Similar questions