Show that :
(sec⊖ - tan⊖)² = 1-sin⊖/1+sin⊖
Answers
Answered by
25
✿ Qᴜᴇsᴛɪᴏɴ :-
Show that :
(sec⊖ - tan⊖)² = 1-sin⊖/1+sin⊖
✎ Sᴏʟᴜᴛɪᴏɴ :-
(sec⊖ - tan⊖)² = [1/cos⊖ - sin⊖/cos⊖]²
= [1-sin⊖/cos⊖]² = (1 - sin⊖)²/cos²⊖
= (1-sin⊖)²/1-sin²⊖ = (1-sin⊖)(1-sin⊖)/(1-sin⊖)(1+sin⊖)
= 1-sin⊖/1 + sin⊖
Answered by
13
= (1-sin⊖)²/1-sin²⊖ = (1-sin⊖)(1-sin⊖)/(1-sin⊖)(1+sin⊖)
= 1-sin⊖/1 + sin⊖
Similar questions