Math, asked by 1RADHIKAA1, 1 year ago

Show that ( sec∅- tan∅) ^2 = 1 - sin∅ / 1 + sin∅

Answers

Answered by rohitkumargupta
20
HELLO DEAR,

 \frac{1 - sin \alpha }{1 + sin \alpha }  \\  \\  =  >  \frac{1 - sin \alpha }{1 + sin \alpha }  \times  \frac{1   -  sin \alpha }{1  - sin \alpha }  \\  \\  =  >  \frac{1 +  {sin}^{2}  \alpha  - 2sin \alpha }{1 -  {sin}^{2}  \alpha }  \\  \\   =  >  \frac{1 +  {sin}^{2}  \alpha  - 2sin \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  >  \frac{1}{ {cos}^{2}  \alpha }  +  \frac{  {sin}^{2} \alpha  }{ {cos}^{2} \alpha  }  -  \frac{2sin \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  >  {sec}^{2}  \alpha  +  {tan}^{2}  \alpha  - 2sec \alpha  \tan \alpha   \\  \\  =  > (sec \alpha  - tan \alpha ) ^{2}


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions