Show that ( SecA - TanA)² = 1-SinA/1 +SinA
Answers
Answered by
2
To prove --->
( SecA - tanA )² = ( 1 - SinA ) / ( 1 + SinA )
Proof--->
LHS = ( SecA - tanA )²
We know that ,
SecA = 1 / CosA and tanA = SinA /CosA , applying it here we get,
= { ( 1 / CosA ) - ( SinA / CosA ) }²
Taking LCM as CosA , we get,
= { ( 1 - SinA ) / CosA }²
= ( 1 - SinA )² / Cos²A
We know that, Cos²A = 1 - Sin²A ,we get,
= ( 1 - SinA )² / ( 1 - Sin²A )
= ( 1 - SinA )² / ( 1 )² - ( SinA )²
Applying a² - b² = ( a + b ) ( a - b ) , we get,
= ( 1 - SinA )² / ( 1 + SinA ) ( 1 - SinA )
( 1 - SinA ) is cancel out from numerator and denominator, we get,
= ( 1 - SinA ) / ( 1 + SinA ) = RHS
Additional information--->
1) 1 + tan²A = Sec²A
2) 1 + Cot²A = Cosec²A
Similar questions