Show that
(secA+tanA)² = 1+sinA/1-sinA
Answers
Answered by
2
Answer:
see this
Step-by-step explanation:
1-sinA/1+sinA=(secA-tanA)²
RHS
1-sinA/1+sinA
Rationalising the denominator
1-sinA (1-SinA) /1+sinA(1-SinA)
(1-SinA)²/ 1² -(Sin²A)
(1-SinA)²/ 1 -(Sin²A)
(1-SinA)² /Cos² A
[ 1 -Sin²A = cos²A]
(1-SinA/CosA)²
(1/CosA-SinA/CosA)²
(SecA-tanA)²
L.H S = R H.S
Answered by
2
Step-by-step explanation:
u should know the following identities
sin² +cos² =1
1 + tan² =sec²
Attachments:

Similar questions