show that secant theta minus tan theta whole square = 1_sin theta /1+ sin theta
Answers
Answered by
18
Answer:-
To Prove :-
(sec θ - tan θ)² = 1 - sin θ / 1 + sin θ
LHS:-
using -
- (a - b)² = a² + b² - 2ab
we get,
⟶ sec² θ + tan² θ - 2 sec θ tan θ
using sec θ = 1/cos θ and tan θ = sin θ / cos θ we get,
[ since , a² + b² - 2ab = (a - b)² where a = 1 , b = sec θ ]
we know that,
sin² θ + cos² θ = 1
⟶ cos² θ = 1 - sin² θ
So,
- (a - b)² = (a - b)(a - b)
- a² - b² = (a + b)(a - b)
Hence, Proved.
Answered by
4
Given :
- secant theta minus tan theta whole square = 1_sin theta /1+ sin theta
Solution :
Taking R.H.S first :
= R.H.S.
Hence Proved !!
Similar questions