Math, asked by apparaomondi14, 5 months ago

show that secant theta minus tan theta whole square = 1_sin theta /1+ sin theta​

Answers

Answered by VishnuPriya2801
18

Answer:-

To Prove :-

(sec θ - tan θ)² = 1 - sin θ / 1 + sin θ

LHS:-

using -

  • (a - b)² = + - 2ab

we get,

⟶ sec² θ + tan² θ - 2 sec θ tan θ

using sec θ = 1/cos θ and tan θ = sin θ / cos θ we get,

 \longrightarrow \sf \:  \frac{1}{ \cos ^{2} \theta }  +  \frac{ { \sin }^{2}  \theta}{ { \cos}^{2}  \theta}  - 2 \times   \frac{1}{ \cos \theta}   \times  \frac{ \sin \theta }{ \cos \theta }  \\  \\ \longrightarrow \sf \:  \frac{1 +  { \sin }^{2} \theta  - 2 \sin \theta }{ { \cos}^{2}  \theta}  \\  \\

[ since , a² + b² - 2ab = (a - b)² where a = 1 , b = sec θ ]

we know that,

sin² θ + cos² θ = 1

cos² θ = 1 - sin² θ

So,

 \: \longrightarrow \sf \:  \frac{(1 -  \sin \theta) ^{2}  }{1 -  { \sin}^{2} \theta  }  \\

  • (a - b)² = (a - b)(a - b)

  • - = (a + b)(a - b)

 \: \longrightarrow \sf \:  \frac{(1 -   \sin \theta) \cancel{(1 -  \sin \theta)}  }{(1 +  \sin \theta) \cancel{(1 -  \sin \theta)}}  \\  \\ \longrightarrow  \large\sf   \frac{1 -  \sin \theta }{1 +  \sin \theta }  = RHS

Hence, Proved.

Answered by Anonymous
4

Given :

  • secant theta minus tan theta whole square = 1_sin theta /1+ sin theta

\text{To Prove : } \\  \\  \\  \sf \: \sec\theta-\tan\theta=\frac{1-\sin\theta}{1+\sin\theta} \: </p><p>

Solution :

Taking R.H.S first :

  \sf : \implies\frac{1-\sin\theta}{1+\sin\theta}\\\\\text{Rationalizing the above fraction}\\\\  \sf : \implies \frac{1-\sin\theta}{1+\sin\theta}\times \frac{1-\sin\theta}{1-\sin\theta}\\\\  \sf : \implies \frac{(1-\sin\theta)^2}{1-\sin^2\theta}\\\\  \sf : \implies \frac{(1-\sin\theta)^2}{\cos^2\theta}\\\\  \sf : \implies(\frac{1-\sin\theta}{\cos\theta})^2\\\\  \sf : \implies (\frac{1}{\cos\theta}-\frac{\sin\theta}{\cos\theta})^2\\\\  \sf : \implies(  \sf \sec\theta-\tan\theta)^2 \\

= R.H.S.

Hence Proved !!

Similar questions