Math, asked by Mister360, 2 months ago

Show that
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α.

Answers

Answered by VεnusVεronίcα
159

\large \mathfrak  {\checkmark \: \pink{Question:-}}

Show that :-

\bf {2sin^2 \beta +}4cos( \alpha + \beta ) \: sin \alpha   \: sin \beta +cos2( \alpha  +  \beta ) = cos2 \alpha

 \\

\large \mathfrak {\checkmark  \: \pink{Solution:-}}

 \bf LHS = 2sin^2 \beta  + 4cos( \alpha  +  \beta ) \: sin \alpha  \: sin \beta  + cos2( \alpha  +  \beta )

\bf 2 {sin}^{2}  \beta  + 4(cos \alpha   \: cos \beta  - sin \alpha  \: sin \beta )sin \alpha  \: sin \beta  + (cos2 \alpha cos2 \beta  - sin2 \alpha sin2 \beta )

\bf 2 {sin}^{2}  \beta  + 4sin \alpha  \: cos \alpha  \: sin \beta  \: cos \beta  - 4 {sin}^{2}  \alpha  \:  {sin}^{2}  \beta  + cos2 \alpha  \: cos2 \beta  - sin2 \alpha  \: sin2 \beta

\bf 2 {sin}^{2}  \beta  + sin2 \alpha  \: sin2 \beta  - 4 {sin}^{2}  \alpha  \:  {sin}^{2}  \beta  + cos2 \alpha  \: cos2 \beta   - sin2 \alpha  \: sin2 \beta

\bf (1 - cos2 \beta ) - (2 {sin}^{2}  \alpha )(2 {sin}^{2}  \beta ) + cos2 \alpha  \: cos2 \beta

\bf (1 - cos2 \beta ) - (1 - cos2 \alpha )(1 - cos2 \beta ) + cos2 \alpha  \: cos2 \beta

\bf 1 - cos2 \beta  + cos2 \alpha  \: cos2 \beta  - (1 - cos2 \beta  - cos2 \alpha  + cos2 \alpha  \: cos2 \beta )

\bf 1-cos2 \beta +cos2 \alpha  \: cos2 \beta -1+cos2 \beta  + cos2 \alpha   - cos2 \alpha  \: cos2 \beta

\bf \cancel{1}-\cancel{cos2 \beta }+\cancel{cos2 \alpha ~cos2 \beta }-\cancel1+\cancel{cos2 \beta }+cos \alpha -\cancel{cos2 \alpha ~cos2 \beta }

\bf cos2 \alpha =RHS

\underline {\boxed {\bf {Hence, proved~!!}}}

 \\

\large \mathfrak {\checkmark \: \pink{Know \: more:-}}

\bf tan2A= \cfrac{2tanA}{1 -  {tan}^{2} A}

\bf sinA=2sin \frac{A}{2} cos \frac{A}{2}  =  \cfrac{2tan \frac{A}{2} }{1 + tan^2 \frac{A}{2} }

\bf cosA=  \cfrac{1 -  {tan}^{2}  \frac{A}{2} }{1 +  {tan^2 \frac{A}{2} } }

 \\

________________________________

Hope the working is clear and concise!

Note:-Kindly swipe the screen from left to right in order to view the answer completely!

Answered by Sagar9040
0

LHS = 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β)

= 2 sin2β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β)

= 2 sin2β + 4 sin α cos α sin β cos β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

= 2 sin2β + sin 2α sin 2β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

= (1 – cos 2β) – (2 sin2α) (2 sin2β) + cos 2α cos 2β

= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β

= cos 2α

= RHS

Therefore, 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α

LHS = 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β)= 2 sin2β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β)= 2 sin2β + 4 sin α cos α sin β cos β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β= 2 sin2β + sin 2α sin 2β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β= (1 – cos 2β) – (2 sin2α) (2 sin2β) + cos 2α cos 2β= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β= cos 2α= RHSTherefore, 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α

Similar questions