Show that sin^-1(2x√(1-x^2))=-2π+2cos^-1x if -1≤x≤-1/√2
Answers
Given:
sin^-1(2x√(1-x^2))=-2π+2cos^-1x
To find:
Show that sin^-1(2x√(1-x^2))=-2π+2cos^-1x if -1≤x≤-1/√2
Solution:
Start with the identity sin^-1(x) = cos^-1(√(1-x^2)) for -1≤x≤1.
Substitute 2x√(1-x^2) for x in the identity above: sin^-1(2x√(1-x^2)) = cos^-1(√(1-(2x√(1-x^2))^2))
Simplify the expression inside the square root: sin^-1(2x√(1-x^2)) = cos^-1(√(1-(4x^2(1-x^2)))
Simplify further: sin^-1(2x√(1-x^2)) = cos^-1(√(1-4x^2+4x^4))
Use the identity cos^-1(x) = -cos^-1(-x) for -1≤x≤1.
Substitute -4x^2+4x^4 for x in the identity above: sin^-1(2x√(1-x^2)) = -cos^-1(4x^2-4x^4)
Use the identity cos^-1(x) = π/2 - sin^-1(√(1-x^2)) for 0≤x≤1
Substitute 4x^2-4x^4 for x in the identity above: sin^-1(2x√(1-x^2)) = -(π/2 - sin^-1(√(1-(4x^2-4x^4)^2))
Simplify the expression inside the square root: sin^-1(2x√(1-x^2)) = -(π/2 - sin^-1(√(1-16x^4+16x^6-16x^8)))
Use the identity sin^-1(x) = π - sin^-1(-x) for -1≤x≤1.
Substitute -16x^4+16x^6-16x^8 for x in the identity above: sin^-1(2x√(1-x^2)) = -(π/2 - (π - sin^-1(16x^4-16x^6+16x^8))
Simplify the expression inside the sin^-1: sin^-1(2x√(1-x^2)) = -(π/2 - (π - (2π - 2cos^-1(x))
Combine like terms and simplify:
sin^-1(2x√(1-x^2)) = -2π + 2cos^-1(x)
#SPJ1