Show that (sin€+1+cos€) (sin€-1+cos€) *Sec€*cosec€=2
Paritshith:
Why not answering
Answers
Answered by
13
Answer:
Step-by-step explanation:
Let us assume theta to be "A"
To prove:
(sinA+1+cosA)(sinA–1+cosA)(secAcosecA) = 2
Proof
LHS
(sin^2A –sinA+sinAcosA+sinA–1+cosA+cosAsinA–cosA+cos^2A)(1/sinAcosA)
sin^2A+cos^2A–1–sinA+sinA+cosA–cosA+sinAcosA+cosAsinA)(1/sinAcosA)
(1–1+2sinAcosA)(1/sinAcosA)
2sinAcosA/cosAsinA
= 2
LHS = RHS
Hence proved
Hope it helps you
Answered by
14
Answer
PROVE THAT : (sin€+cos€+1)(sin€+cos€-1)sec€cosec€=2
Attachments:
Similar questions
Art,
6 months ago
Physics,
6 months ago
Physics,
1 year ago
Physics,
1 year ago
Environmental Sciences,
1 year ago