show that sin 10+ sin 20+ sin 30 + sin 40 = sin 70 + sin 80
Answers
Answered by
0
Answer:
L.H.S
= 2sin15cos5+2sin45cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]
= 2cos5 (sin15+sin45)
= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
= 2cos5 (2 x 1/2 x cos15)
= 2cos5 cos15
R.H.S.
= sin70+sin80
= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
sin75 = sin(90-15) = cos 15
L.H.S = 2cos5 cos15
R.H.S. = 2cos15 cos5
Answered by
3
Step-by-step explanation:
sin70+sin80
Formula used:
1. sinC+sinD
=[2(2 1)cos20]+[2( 21 )cos10]
=cos20+cos10=cos20+cos10
=sin70+sin80=sin70+sin80
Hence proved
please Mark as brainliest and follow
Similar questions