show that sin 10°+sin 40° sin 20°+ sin 50° = sin 70°+sin 80°
plz solve it
Answers
Answered by
1
Answer:
sin70+sin80
Step-by-step explanation:
Formula used:
1. sinC+sinD
= 2 sin ((C+D)/2) cos((C-D)/2)
2.cosA = sin(90°-A)
sin10+sin20+sin40+sin50sin10+sin20+sin40+sin50
=(sin50+sin10)+(sin40+sin20)
=[2\:sin(\frac{(50+10)}{2})\:cos(\frac{(50-10)}{2})]+[2\:sin(\frac{(40+20)}{2})\:cos(\frac{(40-20)}{2})]=[2sin(2(50+10))cos(2(50−10))]+[2sin(2(40+20))cos(2(40−20))]
=[2\:sin60\:cos20]+[2\:sin60\:cos10]=[2sin60cos20]+[2sin60cos10]
=[2\:(\frac{1}{2})\:cos20]+[2\:(\frac{1}{2})\:cos10]=[2(21)cos20]+[2(21)cos10]
=cos20+cos10=cos20+cos10
=sin70+sin80=sin70+sin80
Similar questions