Math, asked by sreedhar3444, 1 year ago

show that
sin 150 cos 120 +cos 330 sin 660 = -1

Answers

Answered by Pitymys
50

We know,

 \sin 150^o=\sin (180^o-30^o)=\sin (30^o)=0.5\\<br />\cos 120^o=-\cos 60^o=-0.5\\<br />\cos 330^o=\cos (360^o-30^o)=\cos (30^o)=\frac{\sqrt{3}}{2}  \\<br />\sin 660^o=\sin (720^o-60^o)=-\sin (60^o)=-\frac{\sqrt{3}}{2}

Now plugging the above values in the original equation,

 \sin 150^o\cos 120^o+\cos 330^o\sin 660^o=-(\frac{1}{2})^2-(\frac{\sqrt{3}}{2}  )^2=-1=RHS

Answered by pinquancaro
25

Answer and Explanation:

To show : \sin 150\times \cos120+\cos 330\times \sin 660=-1

Solution :  

Take LHS,

\sin 150\times \cos120+\cos 330\times \sin 660

Applying trigonometry we can write term as,

\sin 660=\sin(720-60)=-\sin(60)

\cos 330=\cos(360-30)=\cos(30)

\cos 120=\cos(180-60)=-\cos(60)

\sin 150=\sin(180-30)=\sin(30)

Substitute the values in the expression,

=\sin(30)\times(-\cos(60))-\cos(60)\times (-\sin(60))

Put all the values,

=- \frac{1}{2}\times\frac{1}{2}-\frac{\sqrt{3}}{2}\times\frac{\sqrt{3}}{2}

=-\frac{1}{4}-\frac{3}{4}

=\frac{-3-1}{4}

=\frac{-4}{4}

=-1

=RHS

Therefore, \sin 150\times \cos120+\cos 330\times \sin 660=-1

Similar questions