Show that sin 28 degrees =cos 62 degrees
Answers
Answered by
1
LHS = sin 28°
RHS = cos 62°
Now, we know that cos theta = sin (90-theta)
So,
cos 62° = sin (90-62)°
= sin 28°
Therefore
LHS = RHS
Hence, proved.
RHS = cos 62°
Now, we know that cos theta = sin (90-theta)
So,
cos 62° = sin (90-62)°
= sin 28°
Therefore
LHS = RHS
Hence, proved.
Answered by
0
sin28=cos 62
sin28=sin(90-62)
sin28=sin28
L.H.S=R.H.S
Hence proved
sin28=sin(90-62)
sin28=sin28
L.H.S=R.H.S
Hence proved
Similar questions
English,
8 months ago
Physics,
8 months ago
Math,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago