Math, asked by mrpranavnair, 11 months ago

Show that sin^4 A -cos^4A = 1 - 2 cos^2A PLZZ sove this​

Answers

Answered by 0Sona27
1

Step-by-step explanation:

Hope this helps

.♤♡◇♧.

Attachments:
Answered by rishu6845
1

\bold{\pink{To \: prove }}\longrightarrow\\  {sin}^{4}  \alpha  -  {cos}^{4}  \alpha  = 1 - 2 {cos}^{2}  \alpha

\bold{\green{Concept \: used}}\longrightarrow \\ 1) {a}^{2}  -  {b}^{2}  = (a + b) \: (a - b) \\ 2) {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\ 3) {sin}^{2}  \alpha  = 1 -  {cos}^{2}  \alpha

\bold{\blue{Solution}}\longrightarrow  \:\pink{ LHS }\\  =  {sin}^{4}  \alpha  -  {cos}^{4}  \alpha  \\  =  { ({sin}^{2}  \alpha) }^{2}  -  {( {cos}^{2}  \alpha )}^{2}  \\ applying \: ( {a}^{2}  -  {b}^{2} ) = (a + b) \: (a - b) \\  = ( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha ) \: ( {sin}^{2}  \alpha  -  {cos}^{2}  \alpha ) \\ now \: applying \: second \: and \: third \: formulee \\  = ( \: 1 \: ) \: (1 -  {cos}^{2}  \alpha  -  {cos}^{2}  \alpha ) \\  = 1 - 2 {cos}^{2}  \alpha  \\  =\pink{ RHS}

\bold{\red{Additional \: information}}\longrightarrow \\ 1)1 +  {tan}^{2}  \alpha  =  {sec}^{2}  \alpha  \\ 2)1 +  {cot}^{2}  \alpha  =  {cosec}^{2}  \alpha

Similar questions