Math, asked by s4rivakydeerraj, 1 year ago

Show that : sin(45+A) sin (45-A) = 1/2 cos2A.

Answers

Answered by rrohitkumar335pbi6z4
40

Answer:


Step-by-step explanation:


Attachments:
Answered by mysticd
17

Solution:

LHS = sin(45+A)sin(45-A)

= sin[90-(45-A)]sin(45-A)

= cos(45-A)sin(45-A)

\* By complementary angles:

sin(90-A) = cosA */

= \frac{1}{2}\times 2sin(45-A)cos(45-A)

= \frac{1}{2}\times sin[2(45-A)]

/* 2sinAcosA = sin2A */

= \frac{1}{2}sin(90-2A)

= \frac{1}{2}cos2A

/* sin(90-A) = cosA */

= RHS

Therefore,

sin(45+A) sin (45-A)

= 1/2 cos2A

Similar questions