Math, asked by samyrabudhwani1453, 25 days ago

Show that sin(45+x) - sin(45-x) = √2 sin x

Answers

Answered by ZaraAntisera
1

Answer:

\sin \left(45^{\circ \:}+x\right)-\sin \left(45^{\circ \:}-x\right)=\sqrt{2}\sin \left(x\right)

Step-by-step explanation:

\sin \left(45^{\circ \:}+x\right)-\sin \left(45^{\circ \:}-x\right)

=\sin \left(45^{\circ \:}+x\right)-\frac{\sqrt{2}\cos \left(x\right)-\sqrt{2}\sin \left(x\right)}{2}

=\frac{\sqrt{2}\cos \left(x\right)+\sqrt{2}\sin \left(x\right)}{2}-\frac{\sqrt{2}\cos \left(x\right)-\sqrt{2}\sin \left(x\right)}{2}

=\sqrt{2}\sin \left(x\right)

\mathrm{ZARA}

Similar questions