show that
sin^6 A + cos^6 A + 3sin^2 A cos^2 A = 1
Answers
Answered by
2
Answer:
1
Step-by-step explanation:
two identities
I hope this answer is explanatory.
Attachments:
Answered by
2
Step-by-step explanation:
sin^6A + cos^6A + 3sin²Acos²A
= (sin²A)³ + (cos²A)³ + 3sin²Acos²A
=(sin²A + cos²A)(sin⁴A - sin²Acos²A + cos⁴A) + 3sin²Acos²A
[ a³ + b³ = (a + b)(a² - ab + b²)]
=1(sin⁴A - sin²Acos²A + cos⁴A) + 3sin²Acos²A
[sin²A + cos²A = 1]
=sin⁴A + 2 sin²Acos²A + cos⁴A
=(sin²A)² + 2 sin²Acos²A + (cos²A)²
=(sin²A + cos²A)²
=1. (Proved)
_________&&&&_____________
//Hope this will Helped You//
//Please mark it as Brainliest//
#BAL #ANSWERWITHQUALITY
Similar questions