Math, asked by pruthvitegginamath9, 10 months ago

show that
sin^6 A + cos^6 A + 3sin^2 A cos^2 A = 1​

Answers

Answered by Krylights
2

Answer:

1

Step-by-step explanation:

two identities

 { \sin(x) }^{2}  +  { \cos(x) }^{2}  = 1

 {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

I hope this answer is explanatory.

Attachments:
Answered by pansumantarkm
2

Step-by-step explanation:

sin^6A + cos^6A + 3sin²Acos²A

= (sin²A)³ + (cos²A)³ + 3sin²Acos²A

=(sin²A + cos²A)(sin⁴A - sin²Acos²A + cos⁴A) + 3sin²Acos²A

[ a³ + b³ = (a + b)(a² - ab + b²)]

=1(sin⁴A - sin²Acos²A + cos⁴A) + 3sin²Acos²A

[sin²A + cos²A = 1]

=sin⁴A + 2 sin²Acos²A + cos⁴A

=(sin²A)² + 2 sin²Acos²A + (cos²A)²

=(sin²A + cos²A)²

=1. (Proved)

_________&&&&_____________

//Hope this will Helped You//

//Please mark it as Brainliest//

#BAL #ANSWERWITHQUALITY

Similar questions