Math, asked by Anonymous, 10 months ago

show that
sin^6a + cos^6a + 3 sin²a cos² a = 1 ?​

Answers

Answered by Anonymous
20

Answer:

\huge\bf\underline\purple{AnSweR:}

 { \sin }^{6} \alpha  +  { \cos }^{6} \alpha  + 3 { \sin}^{2}   \alpha  { \cos}^{2}  \alpha

 = ( { { \sin}^{2} \alpha  +  { \cos}^{2}  \alpha  })^{3}  - 3 { \sin }^{2} \alpha  { \cos}^{2}   \alpha ( { \sin}^{2}  \alpha  +  {  \cos  }^{2}  \alpha ) + 3 \:  { \sin }^{2}  \alpha  \:  { \cos}^{2}  \alpha

 = 1 - 3 \:  { \sin}^{2}  \alpha  \:  {  \cos }^{2}  \alpha  \:  + 3 \:  { \sin}^{2}  \alpha  \:  { \cos}^{2}  \alpha

\implies\bf\red{1}

Answered by Anonymous
0

Answer:

heya mate

sin^6A+cos^6A

(sin²A)³+(cos²A)³ ............[a^6=(a²)³]

(sin²A+cos²A)³-3sin²Acos²A.........[(a+b)³=a³+b³+3ab]

1³-3sin²Acos²A

1-3sin²Acos²A

!!hence proved!!

Similar questions