Math, asked by KanishkaShree, 1 year ago

show that sin 8x. cos x - sin 6x. cos 3x / cos 2x. cos x - sin 3x. sin 4x = tan 2x

Answers

Answered by pinquancaro
34

We have to prove that:

 \frac{\sin 8x \cos x-\sin 6x \cos 3x}{\cos 2x \cos x-\sin 3x \sin 4x}=\tan 2x

Consider the Left hand side of the equation

 \frac{\sin 8x \cos x-\sin 6x \cos 3x}{\cos 2x \cos x-\sin 3x \sin 4x}

Multiplying numerator and denominator by 2, we get

= \frac{2\sin 8x \cos x-2\sin 6x \cos 3x}{2\cos 2x \cos x-2\sin 3x \sin 4x}

Now using trigonometric identity in the above equation,

 2 \sin A \cos B = \sin(A+B)x + \sin(A-B)x

 2 \cos A \cos B = \cos(A+B)x + \cos(A-B)x

 2 \sin A \sin B = \cos(A-B)x - \cos(A+B)x

We get,

= \frac{\sin 9x+ \sin 7x-(\sin 9x + \sin 3x)}{\cos 3x+\cos x-(\cos(-x)-\cos 7x)}

= \frac{\sin 7x-\sin 3x}{\cos 3x+\cos 7x}

Now using trigonometric identities as:

 \sin A-\sin B =2\cos(\frac{A+B}{2})\sin(\frac{A-B}{2})

 \cos A+\cos B =2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})

So, we get

= \frac{2\cos(\frac{7x+3x}{2})\sin(\frac{7x-3x}{2})}{2\cos(\frac{3x+7x}{2})\cos(\frac{3x-7x}{2})}

=  \frac{2\cos5x\sin 2x}{2\cos 5x\cos2x}

=  \frac{\sin 2x}{\cos2x}

=  \tan 2x

= RHS

Hence, proved.

Similar questions