show that (sin A + cos ecA)^2 + (cos A+ sec A)^2 = 7+ tan^2 A+ cot^2 A
Answers
Answered by
1
Step-by-step explanation:
(sinA+cosecA) ²+(cosA+secA) ²=7+tan ²A+cot ²A.
(sinA+cscA) ²+(cosA+secA) ²
=sin ²A+csc ²A+2sinAcscA+cos ² A+sec²A+2cosAsecA
.......As[a²+b²+2ab=(a+b)²]
=sin ²A+csc ² A+2sinA× 1/sinA +cos ²A+sec ² A+2cosA 1/cosA
........... since secA= 1/cosA
and cscA= 1/sin A
=sin² A+csc ²A+2+cos ²A+sec ²A+2
=(sin ² A+cos ² A)+csc ² A+sec ²A+4
=1+1+cot 2A+1+tan 2A+4 ........... since csc 2A=1+cot 2 A and sec ²A=1+tan ² A
=7+tan ²A+cot ²A
Hence proved.
Similar questions