Math, asked by gandhamveena15, 1 month ago

Show that Σsin (b-c) /sin b sin c = 0​

Answers

Answered by TYKE
1

∑a(sinB−sinC)=0

L.H.S.−

∑a(sinB−sinC)=a(sinB−sinC)+b(sinC−sinA)+c(sinA−sinB)

From sin rule, i.e.,

 \sf \small[ \frac{sin \: a}{a}  =  \frac{sin \: b}{b}  =  \frac{sin \: c}{c} = k ]

∑a(sinB−sinC)=a(bk−ck)+b(ck−ak)+c(ak−bk)

⇒∑a(sinB−sinC)=abk−ack+bck−abk+cak−cbk

⇒∑a(sinB−sinC)=0=R.H.S.

Hence proved!!

Answered by llMissSwagll
67

\huge \sf {\orange {\underline {\red{\underline {❥︎question࿐ }}}}}

∑a(sinB−sinC)=0

L.H.S.−

∑a(sinB−sinC)=a(sinB−sinC)+b(sinC−sinA)+c(sinA−sinB)

From the rule that ie..

\sf \small[ \frac{sin \: a}{a} = \frac{sin \: b}{b} = \frac{sin \: c}{c} = k ]

∑a(sinB−sinC)=a(bk−ck)+b(ck−ak)+c(ak−bk)

⇒∑a(sinB−sinC)=abk−ack+bck−abk+cak−cbk

⇒∑a(sinB−sinC)=0=R.H.S.

Similar questions