Show that sin?-cos?+1/sin?+cos?-1= 1/sec?-tan?.
Answers
GIVEN :
(sin θ – cos θ + 1)/(sin θ + cos θ – 1)
SOLUTION :
LHS: (sin θ – cos θ + 1)/(sin θ + cos θ – 1)
•Divide by cos θ in numerator and denominator,
={(sin θ – cos θ + 1)/cos θ}/{(sin θ + cos θ – 1)/cos θ}
=(sin θ /cos θ – cos θ /cos θ + 1/cos θ)/(sin θ / cos θ + cos θ /cos θ – 1/cos θ)
=(tan θ – 1 + sec θ)/(tan θ + 1 – sec θ)
= (sec θ + tan θ – 1)/(tan θ + 1 – sec θ)
={sec θ + tan θ – (sec² θ – tan² θ)}/(tan θ + 1 – sec θ) [Since sec² θ – tan²θ = 1]
={(sec θ + tan θ) – (sec θ – tan θ) * (sec θ + tan θ)}/(tan θ + 1 – sec θ)
=[(sec θ + tan θ) * {1 – (sec θ – tan θ)}]/(tan θ + 1 – sec θ)
=[(sec θ + tan θ) * (1 – sec θ + tan θ)}]/(tan θ + 1 – sec θ)
= sec θ + tan θ
Now, rationalize it.
=(sec θ + tan θ)*(sec θ – tan θ)/(sec θ – tan θ)
= (sec² θ – tan² θ)/(sec θ – tan θ)
= 1/(sec θ – tan θ) [Since sec²θ -tan²θ = 1]