Math, asked by sunidhitiwari43, 1 day ago

Show that sin pi/14.sin 3pi/14.sin 5pi/14 = 1/8​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: sin\dfrac{\pi}{14} \: sin\dfrac{3\pi}{14} \: sin\dfrac{5\pi}{14} \\

We know,

\boxed{\sf{  \:  \: sinx = cos\bigg(\dfrac{\pi}{2}  - x\bigg) \:  \: }} \\

So, using this result, the above can be rewritten as

\rm \:  =  \: cos\bigg(\dfrac{\pi}{2} - \dfrac{\pi}{14} \bigg) \: cos\bigg(\dfrac{\pi}{2} - \dfrac{3\pi}{14} \bigg) \: cos\bigg(\dfrac{\pi}{2} - \dfrac{5\pi}{14} \bigg) \\

\rm \:  =  \: cos\bigg(\dfrac{7\pi - \pi}{14}\bigg)\: cos\bigg(\dfrac{7\pi - 3\pi}{14}\bigg)\: cos\bigg(\dfrac{7\pi - 5\pi}{14}\bigg)  \\

\rm \:  =  \: cos\bigg(\dfrac{6\pi}{14}\bigg)\: cos\bigg(\dfrac{4\pi}{14}\bigg)\: cos\bigg(\dfrac{2\pi}{14}\bigg)  \\

\rm \:  =  \: cos\bigg(\dfrac{3\pi}{7}\bigg)\: cos\bigg(\dfrac{2\pi}{7}\bigg)\: cos\bigg(\dfrac{\pi}{7}\bigg)  \\

can be further rewritten as

\rm \:  =  \: cos\bigg(\pi - \dfrac{4\pi}{7}\bigg)\: cos\bigg(\dfrac{2\pi}{7}\bigg)\: cos\bigg(\dfrac{\pi}{7}\bigg)  \\

We know,

\boxed{\sf{  \:  \: cos(\pi - x) =  - cosx \: }} \\

So, using this result, we get

\rm \:  =  \: -  \:  cos\bigg(\dfrac{4\pi}{7}\bigg)\: cos\bigg(\dfrac{2\pi}{7}\bigg)\: cos\bigg(\dfrac{\pi}{7}\bigg)  \\

can be re-arranged as

\rm \:  =  \: -  \:  cos\bigg(\dfrac{\pi}{7}\bigg)\: cos\bigg(\dfrac{2\pi}{7}\bigg)\: cos\bigg(\dfrac{4\pi}{7}\bigg)  \\

\rm \:  =  \: -  \:  cos\bigg(\dfrac{\pi}{7}\bigg)\: cos\bigg(2 \: \dfrac{\pi}{7}\bigg)\: cos\bigg( {2}^{2}  \: \dfrac{\pi}{7}\bigg)  \\

We know,

\boxed{\sf{ cosx \: cos2x \: cos {2}^{2}x \:  -  -  - cos {2}^{n}x =  \frac{ sin{2}^{n + 1}x }{ {2}^{n + 1} sinx} \: }} \\

So, using this result, we get

\rm \:  =  \:  -  \: \dfrac{sin {2}^{2 + 1} \dfrac{\pi}{7}}{ {2}^{2 + 1} sin\dfrac{\pi}{7}}

\rm \:  =  \:  -  \: \dfrac{sin {2}^{3} \dfrac{\pi}{7}}{ {2}^{3} sin\dfrac{\pi}{7}}

\rm \:  =  \:  -  \: \dfrac{sin \dfrac{8\pi}{7}}{ 8 sin\dfrac{\pi}{7}}

\rm \:  =  \:  -  \: \dfrac{sin\bigg(\pi +  \dfrac{\pi}{7}\bigg)}{ 8 sin\dfrac{\pi}{7}}

\rm \:  =  \:  -  \: \dfrac{ -  \: sin\bigg(\dfrac{\pi}{7}\bigg)}{ 8 sin\dfrac{\pi}{7}}

\rm \:  =  \: \dfrac{1}{8}

Hence,

\rm\implies \: \: \boxed{\tt{  \: \rm \: sin\dfrac{\pi}{14} \: sin\dfrac{3\pi}{14} \: sin\dfrac{5\pi}{14} =  \frac{1}{8}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2} x} \: }} \\

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }} \\

\boxed{\tt{ tan2x =  \frac{2tanx}{1 -  {tan}^{2} x} \: }} \\

\boxed{\tt{  \: sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\tt{  \: cos3x =  {4cos}^{3}x - 3cosx \: }} \\

\boxed{\tt{  \: tan3x =  \frac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x } \: }} \\

Answered by Anonymous
19

{\pmb{ \frak{\underline\red{Given:-}}}}

 \:  \:  \:  \:  \:  \: \bullet\tt { \:  \: sin \:  \frac{\pi}{14} } \: . \:  \sin  \frac{3\pi}{14} . \: sin  \: \frac{5\pi}{14}

{\pmb {\frak {\underline\red{Solution:-}}}}

\tt:\longmapsto\boxed{ \tt{Answer  \: in  \: the \:  above  \: attachment}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Attachments:
Similar questions