Math, asked by harshitha80, 5 hours ago

show that sin theta - cos theta + 1 by sin theta + cos theta - 1 = sin theta + tan theta ​

Answers

Answered by mathdude500
5

Appropriate Question

\rm :\longmapsto\:\dfrac{sin\theta  - cos\theta  + 1}{sin\theta  + cos\theta  - 1} = sec\theta  + tan\theta

 \red{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\:\dfrac{sin\theta  - cos\theta  + 1}{sin\theta  + cos\theta  - 1}

can be rewritten as

 \rm \:  =  \: \dfrac{\dfrac{sin\theta  - cos\theta  + 1}{cos\theta } }{\dfrac{sin\theta  + cos\theta  - 1}{cos\theta } }

 \rm \:  =  \: \dfrac{\dfrac{sin\theta }{cos\theta }  - \dfrac{cos\theta }{cos\theta }  + \dfrac{1}{cos\theta } }{\dfrac{sin\theta }{cos\theta }  + \dfrac{cos\theta }{cos\theta }  - \dfrac{1}{cos\theta } }

 \rm \:  =  \: \dfrac{tan\theta  - 1 + sec\theta }{tan\theta  + 1 - sec\theta }

can be rewritten as

 \rm \:  =  \: \dfrac{tan\theta + sec\theta  - 1}{tan\theta  + 1 - sec\theta }

We know,

\rm :\longmapsto\:\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}

So, replacing 1 of numerator by this identity, we get

 \rm \:  =  \: \dfrac{tan\theta + sec\theta  - ( {sec}^{2} \theta  -  {tan}^{2} \theta )}{tan\theta  + 1 - sec\theta }

 \rm \:  =  \: \dfrac{(tan\theta  + sec\theta ) - (sec\theta  + tan\theta )(sec\theta  - tan\theta )}{tan\theta  + 1 - sec\theta }

 \rm \:  =  \: \dfrac{(sec\theta  + tan\theta )(1 - sec\theta  + tan\theta )}{tan\theta  + 1 - sec\theta }

 \rm \:  =  \: sec\theta  + tan\theta

Hence,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{sin\theta  - cos\theta  + 1}{sin\theta  + cos\theta  - 1} = sec\theta  + tan\theta}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions