show that sin theta + cos theta whole square + sin theta minus cos theta whole square is equal to 2
Answers
Answered by
7
Step-by-step explanation:
(sin theta + cos theta)²+(sin theta - cos theta)²
= sin² theta + cos²theta + 2sin theta*cos theta + sin² theta + cos² theta -2sin theta
*cos theta
= 2sin²theta + 2cos²theta
= 2(sin²theta + cos²theta)
= 2 answer.
Answered by
9
Solution: (sin∅ + cos∅)² + (sin∅ - cos∅)²
→ sin²∅ + cos²∅ + 2 cos∅ sin∅ + sin²∅ + cos²∅ - 2 sin∅ cos∅
→ sin²∅ + cos²∅ + sin²∅ + cos²∅
Since sin²∅ + cos²∅ = 1,
→ 1 + 1 = 2
Answer is 2
Similar questions