Math, asked by pandukatakam934, 1 year ago

show that sin theta + cos theta whole square + sin theta minus cos theta whole square is equal to 2​

Answers

Answered by Anonymous
7

Step-by-step explanation:

(sin theta + cos theta)²+(sin theta - cos theta)²

= sin² theta + cos²theta + 2sin theta*cos theta + sin² theta + cos² theta -2sin theta

*cos theta

= 2sin²theta + 2cos²theta

= 2(sin²theta + cos²theta)

= 2 answer.

Answered by ShuchiRecites
9

Solution: (sin∅ + cos∅)² + (sin∅ - cos∅)²

→ sin²∅ + cos²∅ + 2 cos∅ sin∅ + sin²∅ + cos²∅ - 2 sin∅ cos∅

→ sin²∅ + cos²∅ + sin²∅ + cos²∅

Since sin²∅ + cos²∅ = 1,

→ 1 + 1 = 2

Answer is 2

Similar questions