Math, asked by anaskt888, 3 months ago

show that (sin0+cos pi÷6)( sin pi÷6+tan pi÷6+tan pi÷4) ÷(tan pi÷6+cot pi÷3)(sec pi ÷3-cosec pi÷3)​

Answers

Answered by pulakmath007
3

SOLUTION

TO EVALUATE

 \displaystyle \sf{ \frac{ (\sin 0 +  \cos  \frac{ \pi }{6})( \sin  \frac{\pi}{6}  +  \tan  \frac{\pi}{6} +  \tan \frac{\pi}{4})}{(\tan  \frac{\pi}{6} +  \cot  \frac{\pi}{3} )( \sec \frac{\pi}{3} -  \cosec \frac{\pi}{3})}  }

EVALUATION

 \displaystyle \sf{ \frac{ (\sin 0 +  \cos  \frac{ \pi }{6})( \sin  \frac{\pi}{6}  +  \tan  \frac{\pi}{6} +  \tan \frac{\pi}{4})}{(\tan  \frac{\pi}{6} +  \cot  \frac{\pi}{3} )( \sec \frac{\pi}{3} -  \cosec \frac{\pi}{3})}  }

 \displaystyle \sf{ =  \frac{ (0 +   \frac{ \sqrt{3} }{ 2} )(  \frac{1}{2}   +   \frac{1}{ \sqrt{3}}   +  1)}{( \frac{1}{ \sqrt{3} } +   \frac{1}{ \sqrt{3} }  )( 2 -  \frac{2}{ \sqrt{3}} ) }  }

 \displaystyle \sf{ =\frac{  \frac{ \sqrt{3} }{ 2} ( \frac{3 \sqrt{3}  + 2}{ 2\sqrt{3}}   )}{\frac{2}{ \sqrt{3} }( \frac{2 \sqrt{3} - 2 }{ \sqrt{3}})  }  }

 \displaystyle \sf{ =   \frac{3}{8}   \times  \frac{3 \sqrt{3}  + 2}{2 \sqrt{3}  - 2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of cot (-3155°)

https://brainly.in/question/6963315

2. Find the value of p if 3cosec2A(1+COSA)(1 - COSA) =p

https://brainly.in/question/23381523

Similar questions