show that:
sin4theta + cos4theta = 1- cos2theta.
Answers
Answered by
5
Solution :
Here I am using A instead of theta.
************************************
We know the algebraic identity:
a² + 2ab + b² = ( a + b )²
Or
a² + b² = ( a + b )² - 2ab
and
By Trigonometric identity:
sin²A + cos²A = 1
***************************************
Here ,
LHS = sin⁴ A + cos⁴A
= ( sin²A )² + ( cos²A )²
= ( sin²A + cos²A )² -2sin²Acos²A
= 1 - 1/2( 4sin²Acos²A )
= 1 - 1/2 ( sin²2A )
= ( 2 - sin²2A )/2
= ( 1 + 1 - sin²2A )/2
= ( 1 + cos²2A )/2
••••
Here I am using A instead of theta.
************************************
We know the algebraic identity:
a² + 2ab + b² = ( a + b )²
Or
a² + b² = ( a + b )² - 2ab
and
By Trigonometric identity:
sin²A + cos²A = 1
***************************************
Here ,
LHS = sin⁴ A + cos⁴A
= ( sin²A )² + ( cos²A )²
= ( sin²A + cos²A )² -2sin²Acos²A
= 1 - 1/2( 4sin²Acos²A )
= 1 - 1/2 ( sin²2A )
= ( 2 - sin²2A )/2
= ( 1 + 1 - sin²2A )/2
= ( 1 + cos²2A )/2
••••
Similar questions