Math, asked by tssrmurthyotcgcy, 1 year ago

SHOW that sin600.cos330 +cos120.sin150=1

Answers

Answered by tribeking22otbgm9
79
sin 600 . cos 330 + cos 120 . sin 150 = 1
sin (1 × 360 + 240) . cos (360 - 30) + cos (180 - 60) . sin (180 - 30) = 1
sin 240 . cos 30 + (-cos 60) . sin 30 = 1
sin (180 + 60) . 1/2√3 - 1/2 . 1/2 = 1
-sin 60 . 1/2√3 - 1/4 = 1
-1/2√3 . 1/2√3 - 1/4 = 1
-3/4 - 1/4 = 1
-4/4 = 1
-1 ≠ 1
Answered by pinquancaro
34

Answer:

\sin 600\times \cos330+\cos 120\times \sin 150=-1

Step-by-step explanation:

To show : \sin 600\times \cos330+\cos 120\times \sin 150=-1

Solution :

Take LHS,

\sin 600\times \cos330+\cos 120\times \sin 150

Applying trigonometry,

\sin 600=\sin(3\times 180+60)=-\sin(60)

\cos 330=\cos(360-30)=\cos(30)

\cos 120=\cos(180-60)=-\cos(60)

\sin 150=\sin(180-30)=\sin(30)

Substitute the values in the expression,

=-\sin(60)\times \cos(30)-\cos(60)\times \sin(30)

Put all the values,

=-\frac{\sqrt{3}}{2}\times\frac{\sqrt{3}}{2}-\frac{1}{2}\times \frac{1}{2}

=-\frac{3}{4}-\frac{1}{4}

=\frac{-3-1}{4}

=\frac{-4}{4}

=-1

=RHS

Therefore, \sin 600\times \cos330+\cos 120\times \sin 150=-1

Similar questions