Math, asked by PriyaMerulala, 10 months ago

show that , sinA/1-cosA=cosecA+cotA​

Answers

Answered by TheInsaneGirl
10

{ \tt{ \underline{ \boxed{ \red{Trigonometry}}}}} \implies

To Prove :

 \implies{ \sf{ \dfrac{SinA}{1 - Cos \: A}}}= { \sf{ Cosec \: A \:  +  Cot \: A}}

Multiply and Divide the equation by ( 1 + Cos A )

\implies{ \sf{ \dfrac{SinA}{1 - Cos \: A}}} \times  { \sf\dfrac{ (\: 1  + \ \: Cos \: A) }{(1  +  Cos \: A)}} \\  \\  \implies{ \sf{ \dfrac{SinA(1 + \: Cos \: A)}{1 {}^{2}  - Cos  {}^{2} \: A}}}  \:  \\  \\  \implies \:  \: { \sf{ \dfrac{SinA +SinA \: Cos} {Sin {}^{2} A}}} \:  \:  \:

[ Using Sin²∅ + Cos²∅ = 1 ]

Separate the terms ,

 \implies \:  \: { \sf{ \dfrac{SinA } {Sin {}^{2} A}}} \:  \:   +  { \sf{ \dfrac{SinA  \: C os A  }{Sin {}^{2} A}}} \:

★ Sin A gets cancelled out both sides , we're left with

 \implies \:  \: { \sf{ \dfrac{1 } {Sin A}}} \:  \:   +  { \sf{ \dfrac{ \: Cos A  }{Sin  A}}} \:

 \implies \: { \sf{Cosec A + Cot A}} \:

Using ,

 \rightarrow \:  { \boxed{ \bold{\dfrac{1}{Sin  \theta} = Cosec \:  \theta}}} \:  \: and \:  \:  \rightarrow \:  { \boxed{ \bold{\dfrac{Cos  \theta}{Sin  \theta} = Cot \: \:  \theta}}} \:  \: \:

Hence ,

L.H.S = R.H.S

Answered by brainological
0

Answer:

hope that helps you

please mark as Brainliest

Attachments:
Similar questions