Show that (sinA + COSA)^2+(sin A -cos A)^2 = 2
Answers
Answered by
1
Step-by-step explanation:
(sinA+cosA)² +(sinA-cosA)²
=sin²A+cos²A+2sinAcosA+sin²A+cos²A-2sinAcos
since sin²A+cos²A=1
1+2sinAcosA+1-2sinAcosA
=1+1
=2
Answered by
1
To prove:
( sin A + cos A) ² + ( sin A - cos A) ² = 2
Proof:
LHS
( sin A + cos A) ² + (sin A - cos A) ²
........... Using (a+b) ² = a² + 2ab + b²
........... Using (a-b) ² = a² - 2ab + b²
(sin A² + 2 sinA cosA + cos A²) + (sin A² - 2 sinA cosA + cos A²)
.......... + 2 sinA cosA and - 2 sinA cosA gets cancelled because of + and - sign
sin A² + cos A² + sin A² + cos A²
.......... Trigonometry identity.... sin A² + cos A² = 1
1 + 1
= 2
Therefore LHS = RHS = 2
Hence we proved that.....
( sin A + cos A) ² + (sin A - cos A) ² = 2
✔️Pls mark it brainliest.. ✔️
Similar questions