Math, asked by baddamsathwikreddy25, 8 months ago

show that (sintheta+costheta)^2-(sintheta-costheta)^2=2sin2theta​

Answers

Answered by pulakmath007
21

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO PROVE

 \sf{ {( \sin \theta +  \cos \theta)}^{2}  - \: {( \sin \theta  -   \cos \theta)}^{2}  = 2 \sin 2\theta}

FORMULA TO BE IMPLEMENTED

 1. \:  \:  \sf{  {a}^{2}  -  {b}^{2} = (a + b)(a - b) \: }

2. \:  \:  \sf { \:  \sf{ {2\sin \theta  \cos \theta}  =  \sin 2\theta} }

CALCULATION

LHS

 =  \sf{ {( \sin \theta +  \cos \theta)}^{2}  - \: {( \sin \theta +  \cos \theta)}^{2} }

 =  \sf{  \bigg[ {( \sin \theta +  \cos \theta)}   + \: {( \sin \theta  -   \cos \theta)}\bigg]  \times \bigg[ {( \sin \theta +  \cos \theta)}    -  \: {( \sin \theta  -   \cos \theta)}\bigg]   \:  }

 =  \sf{  \bigg[ { \sin \theta +  \cos \theta}   + \: { \sin \theta  -   \cos \theta}\bigg]  \times \bigg[ { \sin \theta +  \cos \theta}    -  \: {\sin \theta   +    \cos \theta}\bigg]   \:  }

 = \sf {  \sf{ {2\sin \theta  \times 2 \cos \theta}  }}

 = \sf {  \sf{ {4\sin \theta  \cos \theta}  }}

 = \sf {  \sf{ {2 \times 2\sin \theta  \cos \theta}  }}

 =  \sf{ {2  \sin 2\theta }}

= RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 3x=cosecθ and 3/x=cotθ

then find the value of 3(x²-1/x²)

https://brainly.in/question/21134289

Similar questions