Math, asked by sanchit6279, 1 year ago

show that (sintheta +costheta)whole square+(sintheta-costheta)whole square=2​

Answers

Answered by RewantthReddy
1

Answer:

it is my answer bro my I'd is there just follow me

Attachments:
Answered by mindfulmaisel
2

Given:

(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}

To Find:

(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2

Solution:

Let’s take L.H.S data and find the R.H.S

Step 1:

\begin{array}{l}{=(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}} \\ {=\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta \quad \ldots \text { (i) }}\end{array}

Step 2:

We Know \sin ^{2} \theta+\cos ^{2} \theta=1, Apply this in equation (i).

= 1 + 1

= 2

= R.H.S.

\bold{\therefore(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=2}

L.H.S = R.H.S

Hence, proved.

Similar questions