show that sintita plus cos tita whole square plus sin tita -cos tita whole square is equals to 2
Answers
Answered by
0
(sin θ + cos θ)² + (sin θ - cos θ)² = 2
since it is in the form (a + b)² & (a-b)² we must use the identities...
on expanding,
sin² θ + 2 sin θ · cos θ + cos² θ + sin² θ - 2 sin θ · cos θ + cos² θ = 2
(sin² θ + cos² θ) + (sin² θ + cos² θ) = 2 [since (sin² θ + cos² θ = 1)]
1 + 1 = 2
2 = 2
hence proved...
Similar questions