Math, asked by simranmaakan8416, 4 days ago

show that
sinx - sin 3x /sin²x - cos²x = 2 sin x ​

Answers

Answered by tennetiraj86
2

Solution :-

On taking LHS

(sin x - sin 3x) / ( sin²x - cos²x) ------------(1)

The numerator in (1) = sin x - sin 3x

This is in the form of sin C - sin D

where , C = x and D = 3x

We know that

sin C-sin D = 2 cos (C+D)/2 sin (C-D)/2

Therefore,

sin x - sin 3x

= 2 cos (x+3x)/2 sin (x-3x)/2

= 2 cos (4x/2) sin (-2x)/2

= 2 cos 2x sin (-x)

We know that

sin (-A) = - sin A

Therefore,

sin x - sin 3x = - 2 cos 2x sin x ----------(2)

The denominator in (1) = sin² x - cos²x

=> - ( cos² x - sin² x)

We know that

cos 2x = cos² x - sin² x

Therefore, sin² x - cos²x = - cos 2x -------(3)

Now (1) becomes from (2)&(3)

[ - 2 cos 2x sin x] / (- cos 2x)

On cancelling - cos 2x in both numerator and denominator then

= 2 sin x

= RHS

=> LHS = RHS

Hence, Proved.

Answer :-

(sin x - sin 3x) / ( sin²x - cos²x) = 2 sin x

Used formulae:-

sin C-sin D=2 cos (C+D)/2 sin (C-D)/2

cos 2x = cos² x - sin² x

Similar questions