Show that Sn - 2Sn-1 + Sn-2=d
Answers
Answered by
23
Let a is the first term, n is the number of terms and d is the common difference of AP.
Sum of n terms of an AP is given as:
Sn = (n/2)*{2a + (n-1)d}
Now, Sn-1 = {(n-1)/2}*{2a + (n-1 -1)d}
=> Sn-1 = {(n-1)/2}*{2a + (n- 2)d}
and Sn-2 = {(n-2)/2}*{2a + (n-2 -1)d}
=> Sn-2 = {(n-2)/2}*{2a + (n- 3)d}
Now, Sn - 2Sn-1 + Sn-2
= (n/2)*{2a + (n -1)d} - 2{(n-1)/2}*{2a + (n -2)d} + {(n-2)/2}*{2a + ( n -3)d}
= (1/2){2a*n + n(n - 1)d - 4a(n - 1) - 2(n - 1)*(n -2)d + 2a(n - 2) + (n - 2)*(n - 3)d}
= (1/2){2a*n + n(n - 1)d - 4a*n + 4n - 2(n - 1)*(n -2)d + 2a*n - 4a + (n - 2)*(n - 3)d}
= (1/2){2a(n - 2n + 2 + n + 2) + d(n2 - n - 2n2 + 6n - 4 + n2 - 5n + 6)}
= (1/2){2a * 0 + 2d}
= 2d/2
= d
So, the value of Sn - 2Sn-1 + Sn-2 is d
Sum of n terms of an AP is given as:
Sn = (n/2)*{2a + (n-1)d}
Now, Sn-1 = {(n-1)/2}*{2a + (n-1 -1)d}
=> Sn-1 = {(n-1)/2}*{2a + (n- 2)d}
and Sn-2 = {(n-2)/2}*{2a + (n-2 -1)d}
=> Sn-2 = {(n-2)/2}*{2a + (n- 3)d}
Now, Sn - 2Sn-1 + Sn-2
= (n/2)*{2a + (n -1)d} - 2{(n-1)/2}*{2a + (n -2)d} + {(n-2)/2}*{2a + ( n -3)d}
= (1/2){2a*n + n(n - 1)d - 4a(n - 1) - 2(n - 1)*(n -2)d + 2a(n - 2) + (n - 2)*(n - 3)d}
= (1/2){2a*n + n(n - 1)d - 4a*n + 4n - 2(n - 1)*(n -2)d + 2a*n - 4a + (n - 2)*(n - 3)d}
= (1/2){2a(n - 2n + 2 + n + 2) + d(n2 - n - 2n2 + 6n - 4 + n2 - 5n + 6)}
= (1/2){2a * 0 + 2d}
= 2d/2
= d
So, the value of Sn - 2Sn-1 + Sn-2 is d
imellyshah:
Yes
Similar questions