Math, asked by Anonymous, 6 months ago

show that sqrt1+sinA/1-sinA=secA+tanA

Answers

Answered by rishu1910
1

Answer: √1+sina-/1-sina

multiplying numerator and denominator by √1+sina

(√1+sina)(√1+sina)/√(1-sina)(1+sina)

(√1+sina)²/√1-sin²a

1+sina/cosa

1/cosa + sina/cosa

seca + tana

HENCE PROVED

DON'T FORGET TO FOLLOW ME

Step-by-step explanation:

Answered by EnchantedBoy
2

Step-by-step explanation:

Given:\sqrt{\frac{1+sinA}{1-sinA}}

To prove:\sqrt{\frac{1+sinA}{1-sinA}}×\sqrt{\frac{1+sinA}{1+sinA}}

then,

→\sqrt{\frac{1+sinA}{1-sinA}×\frac{1+sinA}{1+sinA}}

→\sqrt{\frac{(1+sinA)²}{1-sinA×1+sinA}}

→\frac{\sqrt{1+sinA}}{\sqrt{1-sinA}}

→\frac{1+sinA}{\sqrt{cos²A-1}}

→\frac{1+sinA}{cosA}

→\frac{1}{cosA}+\frac{sinA}{cosA}

→\boxed{secA+tanA}

R.H.S

Hence proved......

Similar questions